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Abstract
A formula is derived that allows us to compute one-loop mass shifts for kinks
and self-dual Abrikosov–Nielsen–Olesen vortices. The procedure is based on
canonical quantization and heat-kernel/zeta function regularization methods.

PACS numbers: 03.70.+k, 11.15.Kc, 11.15.Ex

1. Introduction

Abrikosov vortex lines [1] were rediscovered by Nielsen and Olesen in the realm of the
Abelian Higgs model and were proposed as models for dual strings [2]. In this framework, the
interest of studying the quantum nature of these quasi-one-dimensional extended structures
was immediately recognized; contrarily to the macroscopic Ginzburg–Landau theory of Type
II superconductors, the birthplace of magnetic flux tubes, the Abelian Higgs model is expected
to play a role in microscopic physics. This issue was first addressed in section 3 of the original
Nielsen–Olesen paper; taking the zero thickness limit of the vortex line, the quantization
techniques of the old string theory were applied.

In this paper, we shall deal with one-loop mass shifts for the topological solitons that
generate the thick string structures. The mass of the topological solitons of the (2+1)-
dimensional Abelian Higgs model become the string tension of the flux tubes embedded
in three dimensions. Thus, from the (3+1)-dimensional perspective, semi-classical string
tensions will be considered. In particular, we offer as a novelty the derivation of the vortex
Casimir energy from the canonical quantization of the planar Abelian Higgs model. With this
demonstration, we shall arrive at the starting point chosen in [3, 4] to derive a formula for the
one-loop vortex mass shifts. The formula involves the coefficients of the heat-kernel expansion
associated with the second-order fluctuation operator and affords us a numerical computation
of the mass shifts. Before our work, only fermionic fluctuations on vortex backgrounds have
been accounted for by Bordag in [5].
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The control of the ultraviolet divergences arising in the procedure will be achieved by using
heat-kernel/zeta function regularization methods. In the absence of detailed knowledge of
the spectrum of the differential operator governing second-order fluctuations around vortices,
the expansion of the associated heat kernel will be used in a way akin to that developed in the
computation of one-loop mass shifts for one-dimensional kinks, see [6–8]. In fact, a similar
technique has been applied before to compute the mass shift for the supersymmetric kink [9],
although in this latter case the boundary conditions must respect supersymmetry. In the case
of vortices, the only available results besides the work reported here refer to supersymmetric
vortices and were achieved by Vassilevich and the Stony Brook/Wien group [10, 11].

2. High-temperature one-loop kink mass shift formula

We start by very briefly treating the parallel and simpler development for the kink of the λ(φ)4
2

model. With the conventions of [6] the one-loop kink mass shift formula in the λ(φ)4
2 model

on a line is formally �MK = �MC
K + �MR

K . The two parts are

(i) The kink Casimir energy measured with respect to the vacuum Casimir energy—zero-
point energy renormalization:

�MC
K = �E(φK) − �E0 = h̄m

2
√

2

(
Tr K

1
2 − Tr K

1
2

0

)
K = − d2

dx2
+ 4 − 6

cosh2 x
, K0 = − d2

dx2
+ 4.

(1)

K and K0 are the differential operators governing the second-order fluctuations around
the kink and the vacuum, respectively.

(ii) The contribution of the mass renormalization counter-terms to the one-loop kink mass:

�MR
K = −3

h̄m√
2
I (4)

∫
dx
(
φ2

K(x) − φ2
±
)
,

(2)

I (4) =
∫

d2k

(2π)2

i(
k2

0 − k2 − 4 + iε
) .

The ultraviolet divergences are regularized by means of generalized zeta functions:

�MC
K(s) = h̄

2

(
2

µ2

m2

)s

µ(ζK(s) − ζK0(s)),

�MR
K(s) = −6h̄

L

(
2µ2

m2

)s+ 1
2 �(s + 1)

�(s)
ζK0(s + 1),

where s is a complex parameter, µ is a parameter of dimension L−1 and L is a normalization
length on the line. From the partition functions, one obtains the generalized zeta functions via
Mellin transform:

Tr e−βK0 = mL√
8πβ

e−4β, Tr∗ e−βK = mL√
8πβ

e−4β + e−3β(1 − Erfc
√

β) − Erfc 2
√

β

ζK0(s) = mL√
8π

�
(
s − 1

2

)
22s−1�(s)

;

ζ ∗
K(s) = ζK0(s) +

�
(
s + 1

2

)
√

π�(s)

[
2

3s+ 1
2

2F1

[
1

2
, s +

1

2
,

3

2
,−1

3

]
− 1

4s

1

s

]
,



One-loop mass shift formula for kinks and self-dual vortices 6465

passing from complementary error functions Erfcx to hypergeometric Gauss functions
2F1[a, b, c; d]. The star means that the zero mode is not accounted for. Because
�MC

K = lims→− 1
2
�MC

K(s) and �MR
K = lims→− 1

2
�MR

K(s)

�MC
K = − h̄m

2
√

2π
lim
ε→0

[
3

ε
+ 3 ln

2µ2

m2
− π√

3

]
,

�MR
K = h̄m

2
√

2π
lim
ε→0

[
3

ε
+ 3 ln

2µ2

m2
− 2(2 + 1)

]
provides the exact Dashen–Hasslacher–Neveu (DHN) result, see [6] and references quoted
therein:

�MK = �MC
K + �MR

K = h̄m

2
√

6
− 3h̄m

π
√

2
.

Without using the knowledge of the spectrum of K, one can rely on the high-temperature
expansion of the partition function:

Tr e−βK = e−4β

√
4πβ

∞∑
n=0

cn(K)βn, c0(K) = lim
L→∞

mL√
2

,

cn(K) = 2n+1(1 + 22n−1)

(2n − 1)!!
, n � 1

to find

ζK(s) = 1

�(s)

[
1√
4π

∞∑
n=0

cn(K)
γ
[
s + n − 1

2 , 4
]

4s+n− 1
2

−
∫ 1

0
dβ βs−1

]
+
∫ ∞

1
dβ βs−1 Tr∗ e−βK.

Here, the zero mode has been subtracted and the meromorphic structure of ζK(s) is encoded
in the incomplete gamma functions γ

[
s + n − 1

2 , 4
]
. Neglecting the (very small) contribution

of the entire function, and cutting the series at a large but finite N0, the kink Casimir energy
becomes

�MC
K � h̄

2
lim

s→− 1
2

(
2µ2

m2

)s

µ
1

�(s)

[
1√
4π

N0∑
n=1

cn(K)
γ
[
s + n − 1

2 , 4
]

4s+n− 1
2

− 1

s

]
,

i.e., the zero-point vacuum energy renormalization takes care of the term coming from c0(K).

Note that ζK0(s) � mL√
8π

γ [s− 1
2 ,4]

22s−1�(s)
in the β < 1 regime where the high-T expansion is reliable.

The other correction due to the mass renormalization counter-terms can also be arranged into
meromorphic and entire parts:

�MR
K = − h̄µ

2
√

4π
c1(K) lim

s→− 1
2

(
2µ2

m2

)s+ 1
2 1

4s+ 1
2 �(s)

[
γ

[
s +

1

2
, 4

]
+ �

[
s +

1

2
, 4

]]
.

The mass renormalization term exactly cancels the c1(K) contribution. Our minimal
subtraction scheme fits with the renormalization prescription set in [12]: for theories with
only massive fluctuations, the quantum corrections should vanish in the limit in which all
masses go to infinity. This criterion requires precisely the cancellation found. We end with
the high-temperature one-loop kink mass shift formula:

�MK = − h̄m

4
√

2π

[
1√
4π

N0∑
n=2

cn(K)
γ [n − 1, 4]

4n−1
+ 2

]
, β = h̄m

kBT
< 1.

Finally, by applying this formula with N0 = 11, we have

�MK
∼= − 0.471 371h̄m,

with an error with respect to the DHN result of 0.000 2580h̄m.



6466 A A Izquierdo et al

3. The planar Abelian Higgs model

In this section, we generalize formulae (1) and (2) to determine the one-loop mass shift of
vortices in the Abelian Higgs model. We shall derive the formula that serves as the starting
point in papers [3, 4], thus filling a gap in the issue. Within the conventions stated in these
references, we write the action governing the dynamics of the AHM in the form

S = v

e

∫
d3x

[
−1

4
FµνF

µν +
1

2
(Dµφ)∗Dµφ − κ2

8
(φ∗φ − 1)2

]
.

A shift of the complex scalar field from the vacuum φ(xµ) = 1 + H(xµ) + iG(xµ) and choice
of the Feynman–’t Hooft renormalizable gauge R(Aµ,G) = ∂µAµ(xµ) − G(xµ) lead us to
write the action in terms of Higgs H, Goldstone G, vector boson Aµ and ghost χ fields:

S + Sg.f. + Sghost = v

e

∫
d3x

[
−1

2
Aµ[−gµν(� +1)]Aν + ∂µχ∗∂µχ − χ∗χ +

1

2
∂µG∂µG

− 1

2
G2 +

1

2
∂µH∂µH − κ2

2
H 2 − κ2

2
H(H 2 + G2) + H(AµAµ − χ∗χ)

+ Aµ(∂µHG − ∂µGH) − κ2

8
(H 2 + G2)2 +

1

2
(G2 + H 2)AµAµ

]
.

3.1. Vacuum Casimir energy

Canonical quantization promoting the coefficients of the plane wave expansion around the
vacuum of the fields to operators provides the free quantum Hamiltonian:

• If m = ev,

δAµ(x0, �x) =
(

h̄
1
2

e
1
2 v

3
2 L

)∑
�k

∑
α

1√
2ω(�k)

[
a∗

α(�k)eα
µ(k) eikx + aα(�k)eα

µ(k) e−ikx
]

[
âα(�k), â†

α(�q)
] = (−1)δα0δαβδ�k�q ⇒ H(2)[δÂµ]

=
∑

�k

∑
α

h̄mω(�k)

(
(−1)δα0 â†

α(�k)âα(�k) +
1

2

)
.

•

δH(x0, �x) = 1

vL

√
h̄

ev

∑
�k

1√
2ν(�k)

[a∗(�k) eikx + a(�k) e−ikx], ν(�k) = +
√

�k�k + κ2

[â(�k), â†(�q)] = δ�k�q ⇒ H(2)[δĤ ] = h̄m
∑

�k
ω(k)

(
â†(�k)â(�k) +

1

2

)
.

•

δG(x0, �x) = 1

vL

√
h̄

ev

∑
�k

1√
2ω(�k)

[b∗(�k) eikx + b(�k) e−ikx], ω(�k) = +
√

�k�k + 1

[b̂(�k), b̂†(�q)] = δ�k�q ⇒ H(2)[δĤ ] = h̄m
∑

�k
ω(k)

(
b̂†(�k)b̂(�k) +

1

2

)
.
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• Canonical quantization proceeds by anti-commutators for ghost fields

δχ(x0, �x) = 1

vL

√
h̄

ev

∑
�k

1√
2ω(�k)

[c(�k) eikx + d∗(�k) e−ikx]

{ĉ†(�k), ĉ(�q)} = {d̂†(�k), d̂(�q)} = δ�k�q ⇒ H(2)[δχ̂]

= h̄m
∑

�k
ω(k)(ĉ†(�k)ĉ(�k) + d̂†(�k)d̂(�k) − 1).

The vacuum Casimir energy is the sum of four contributions: if 	 = ∑2
j=1

∂
∂xj

∂
∂xj

denotes
the Laplacian,

�E
(1)
0 =

∑
�k

∑
α

h̄m

2
ω(�k) = 3h̄m

2
Tr[−	 + 1]

1
2 ,

�E
(2)
0 =

∑
�k

h̄m

2
ν(�k) = h̄m

2
Tr[−	 + κ2]

1
2

�E
(3)
0 =

∑
�k

h̄m

2
ω(�k) = h̄m

2
Tr[−	 + 1]

1
2 ,

�E
(4)
0 = −

∑
�k

h̄mω(�k) = −h̄m Tr[−	 + 1]
1
2

come from the vacuum fluctuations of the vector boson, Higgs, Goldstone and ghost fields.
Ghost fluctuations, however, cancel the contribution of temporal vector bosons and Golstone
particles, and the vacuum Casimir energy in the planar AHM is due only to Higgs particles
and transverse massive vector bosons:

�E0 =
4∑

r=1

�E
(r)
0 = h̄m Tr[−	 + 1]

1
2 +

h̄m

2
Tr[−	 + κ2]

1
2 .

3.2. Vortex Casimir energy

At the critical point between Type I and Type II superconductivities, κ2 = 1, the energy can
be arranged in a Bogomolny splitting:

E = v2
∫

d2x

2

(
|D1φ ± iD2φ|2 +

[
F12 ± 1

2
(φ∗φ − 1)

]2
)

+
1

2
v2|g|,

g =
∫

d2x F12 = 2πl, l ∈ Z.

Therefore, the solutions of the first-order equations

D1φ ± iD2φ = 0; F12 ± 1
2 (φ∗φ − 1) = 0

are absolute minima of the energy, hence stable, in each topological sector with a classical
mass proportional to the magnetic flux. Assuming a purely vorticial vector field plus the
spherically symmetric ansatz

φ1(x1, x2) = f (r) cos lθ, φ2(x1, x2) = f (r) sin lθ

A1(x1, x2) = −l
α(r)

r
sin θ, A2(x1, x2) = l

α(r)

r
cos θ,
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Figure 1. Plots of the field profiles α(r) (a) and f (r) (b); the magnetic field B(r) (c), and the
energy density ε(r) (d) for self-dual vortices with l = 1 (solid line), l = 2 (dashed line), l = 3
(broken-dashed line) and l = 4 (dotted line).

g = − ∮
r=∞ dxiAi = −l

∮
r=∞

[x2dx1−x1dx2]
r2 = 2πl, the first-order equations reduce to

1

r

dα

dr
(r) = ∓ 1

2l
(f 2(r) − 1),

df

dr
(r) = ± l

r
f (r)[1 − α(r)],

to be solved together with the boundary conditions limr→∞ f (r) = 1, limr→∞ α(r) = 1,

f (0) = 0, α(0) = 0 required by energy finiteness plus regularity at the origin (centre of the
vortex). A partly numerical, partly analytical procedure provides the field profiles f (r), α(r)

as well as the magnetic field and the energy density

B(r) = l

2r

dα

dr
, ε(r) = 1

4
(1 − f 2(r))2 +

l2

r2
(1 − α(r))2f 2(r).

plotted in figure 1 for l = 1, 2, 3, 4.
Consider small fluctuations around vortices φ(x0, �x) = s(�x) + δs(x0, �x),Ak(x0, �x) =

Vk(�x) + δak(x0, �x), where by s(�x) and Vk(�x) we, respectively, denote the scalar and vector
fields of the vortex solutions. Working in the Weyl/background gauge

A0(x0, �x) = 0, ∂kδak(x0, �x) + s2(�x)δs1(x0, �x) − s1(�x)δs2(x0, �x) = 0,

the classical energy up to O(δ2) order is

H(2) + H
(2)
g.f. + H

(2)
ghost = v2

2

∫
d2x

×
{

∂δξT

∂x0

∂δξ

∂x0
+ δξT (x0, �x)Kδξ(x0, �x) + δχ∗(�x)(−	 + |s(�x)|2)δχ(�x)

}
,

where

δξ(x0, �x) =




δa1(x0, �x)

δa2(x0, �x)

δs1(x0, �x)

δs2(x0, �x)


 , ∇j sa = ∂j sa + εabVj sb,
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and

K =




−	 + |s|2 0 −2∇1s2 2∇1s1

0 −	 + |s|2 −2∇2s2 2∇2s1

−2∇1s2 −2∇2s2 −	 + 1
2 (3|s|2 + 2VkVk − 1) −2Vk∂k

2∇1s1 2∇2s1 2Vk∂k −	 + 1
2 (3|s|2 + 2VkVk − 1)


 .

The general solutions of the linearized field equations

∂2δξA

∂x2
0

(x0, �x) +
4∑

B=1

KABδξB(x0, �x) = 0, KGδχ(�x) = (−	 + |s(�x)|2)δχ(�x) = 0

are the eigenfunction expansions

δξ ′
A(x0, �x) = 1

vL

√
h̄

ev

∑
�k

4∑
I=1

1√
2ε(�k)

[
a∗

I (
�k) eiε(�k)x0u

(I)∗
A (�x; �k) + aI (�k) e−iε(�k)x0u

(I)
A (�x; �k)

]

δχ ′(x0, �x) = 1

vL

√
h̄

ev

∑
�k

1√
2εG(�k)

[c(�k)u∗(�x; �k) + d∗(�k)u(�x; �k)],

where A = 1, 2, 3, 4 and by u(I)(k), u(k) the non-zero eigenfunctions of K and KG are
denoted respectively: Ku(I)(�x) = ε(�k)u(I)(�x),KGu(�x) = εG(�k)u(�x). Canonical quantization[

âI (�k), â
†
J (�q)

] = δIJ δ�k�q, {ĉ(�k), ĉ†(�q)} = δ�k�q, {d̂(�k), d̂†(�q)} = δ�k�q
leads to the quantum-free Hamiltonian

Ĥ (2) + Ĥ
(2)
g.f. + Ĥ

(2)
ghost = h̄m

∑
�k

[ 4∑
I=1

ε(�k)

(
â
†
I (

�k)âI (�k) +
1

2

)

+
1

2
εG(�k)(ĉ†(�k)ĉ(�k) + d̂†(�k)d̂(�k) − 1)

]
,

and the vortex Casimir energy reads

	EV = h̄m

2
S Tr∗ K

1
2 = h̄m

2
Tr∗ K

1
2 − h̄m

2
Tr∗(KG)

1
2 .

Note that the ghost fields are static in this combined Weyl-background gauge and their vacuum
energy is one-half with respect to the time-dependent case. Only the Goldstone fluctuations
around the vortices must be subtracted. The zero-point vacuum energy renormalization
provides an analogous formula to (1) for self-dual (κ2 = 1) vortices

	MC
V = 	EV − 	E0 = h̄m

2

[
S Tr∗ K

1
2 − S Tr K

1
2

0

]
. (3)

3.3. Mass renormalization energy

Adding the counter-terms

LS
c.t. = 2h̄I (1)[|φ|2 − 1], LA

c.t. = −h̄I (1)AµAµ, I (1) =
∫

d3k

(2π)3

i

k2 − 1 + iε
to the Lagrangian, the divergences arising in the one-loop Higgs, Goldstone and vector boson
self-energy graphs as well as the Higgs tadpole are exactly cancelled. These terms add the
following contribution to the one-loop vortex mass shift:

	MR
V = h̄mI (1)

∫
d2x[2(1 − |s(�x)|2) − Vk(�x)Vk(�x)], (4)

and, formally, 	MV = 	MC
V + 	MR

V .
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4. High-temperature one-loop vortex mass shift formula

As in the kink case, from the high-temperature expansion of the heat kernels

Tr e−βK = e−β

4πβ

∞∑
n=0

4∑
A=1

βn[cn]AA(K), Tr e−βKG = e−β

4πβ

∞∑
n=0

βncn(K
G)

the vortex generalized zeta functions can be written in the form

ζK(s) =
∞∑

n=0

4∑
A=1

[cn]AA(K)
γ [s + n − 1, 1]

4π�(s)
+

1

�(s)

∫ ∞

1
Tr∗ e−βK dβ

ζKG(s) =
∞∑

n=0

cn(K
G)

γ [s + n − 1, 1]

4π�(s)
+

1

�(s)

∫ ∞

1
dβ Tr∗ e−βKG

.

Neglecting the entire part and setting a large but finite N0 the vortex Casimir energy is
regularized as

�MC
V (s) = h̄µ

2

(
µ2

m2

)s
{

− 2l

�(s)

∫ 1

0
dβ βs−1

+
N0∑
n=1

[
4∑

A=1

[cn]AA(K) − cn(K
G)

]
γ [s + n − 1, 1]

�(s)

}
,

where the 2l zero modes have been subtracted: the zero-point vacuum renormalization
amounts to throwing away the contribution of the c0(K) and c0(K

G) coefficients. Also,
�MR

V is regularized in a similar way

�MR
V (s) = h̄

2µL2

(
µ2

m2

)s

ζKG
0
(s)�(s(�x), Vk(�x));

�(s(�x), Vk(�x)) =
∫

d2x[2(1 − |s(�x)|2) − Vk(�x)Vk(�x)].

The physical limits s = − 1
2 for �MC

V and s = 1
2 for �MR

V are regular points of the
zeta functions (contrarily to the kink case). But, as in the kink case, the contribution of
the first coefficient of the asymptotic expansion exactly kills the contribution of the mass
renormalization counter-terms. The explanation of this fact proceeds along the same lines as
in the kink case.

�M
(1)C
V (−1/2) = −h̄m

8π
�(s, Vk)

γ [−1/2, 1]

�(1/2)
, �MR

V (1/2) = h̄m

8π
�(s, Vk)

γ [−1/2, 1]

�(1/2)

and we finally obtain the high-temperature one-loop vortex mass shift formula:

�MV = −h̄m

2

[
1

8π
√

π

N0∑
n=2

[
4∑

A=1

[cn]AA(K) − cn(K
G)

]
γ

[
n − 3

2
, 1

]
+

2l√
π

]
,

β = h̄m

kBT
< 1.

Numerical integration of the Seeley densities allows us to compute the heat-kernel coefficients.
We thus find, by setting N0 = 6, the following numerical results for one-loop mass shifts of
superimposed vortices with low magnetic fluxes:

Ml=1
V = m

(πv

e
− 1.094 27h̄

)
+ o(h̄2), Ml=2

V = 2m
(πv

e
− 1.081 06h̄

)
+ o(h̄2)

Ml=3
V = 3m

(πv

e
− 1.062 30h̄

)
+ o(h̄2), Ml=4

V = 4m
(πv

e
− 1.046 51h̄

)
+ o(h̄2).
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5. Summary and outlook

We have offered a parallel exposition of the derivation of formulae giving the semi-classical
masses of kinks and self-dual vortices starting from canonical quantization and proceeding
through heat-kernel expansions/generalized zeta functions methods. The treatment of this
problem for these, respectively, one-dimensional and two-dimensional solitons has thus been
unified. It seems compelling to apply this method to compute the semi-classical mass of one
or other form of Chern–Simons–Higgs vortices [13].
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